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The child of two fields

e Classical descriptive set theory, 1895 —
Borel, Baire, Hadamard, Lebesgue 1905, Lusin, Suslin, Novikov, ...
Definability theory on the continuum at first represented by

R = the real numbers, AN = Baire space = (N — N)

with N ={0,1,...}, later studied on Polish spaces

e Hyperarithmetical computability on N, 1950 —
Martin Davis, Mostowski, Kleene 1955, Spector, ...

Common motivation (after Lebesgue):
* Constructively defined sets and functions should have special
properties that distinguish them from arbitrary ones

e Effective descriptive set theory (EDST): a common extension, on
recursive Polish spaces, with applications to both (and other fields)
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Outline
Lecture 1. Recursion in Polish spaces
Lecture 2. Effective Borel, analytic and co-analytic pointsets
Lecture 3. Structure theory for pointclasses
e Primary sources for the lectures (posted on my homepage):
Descriptive set theory, ynm, 1980, 2nd edition 2009
Classical descriptive set theory as a refinement of effective

descriptive set theory, ynm, 2010
Kleene's amazing second recursion theorem, ynm, 2010

Notes on effective descriptive set theory, Gregoriades and ynm

(in preparation)

e | will try to give an elementary introduction to some of the
fundamental notions, ideas and methods of proof specific to EDST
not to cover a large part of the field, recent results or applications

e There are several proofs on the slides that | will skip in the lectures
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EDST as a recursion theory: what comes first?

— In classical recursion (computability) theory on N and N,
we typically define

first the recursive partial functions f : N” x Nk =~ N

next the semirecursive (r.e.) relations P C N" x Nk
(the domains of convergence of recursive partial functions)

and then the arithmetical and analytical relations, etc

— In Polish recursion theory we must reverse the order: define
first the semirecursive relations (pointsets) P C X

next the locally recursive partial functions f : X — Y
(whose domains of convergence are arbitrary)

and then the arithmetical and analytical relations, etc

(and we must define recursive Polish spaces, which include N, V', R)

e Emil Post followed this second order of definitions for recursion on N
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* Recursively presented Polish metric spaces
e Fix a recursive enumeration qo, g1, . .. of the rational numbers Q,
i.e., such that k — sign(qx), num(qk), den(qk) are recursive
Def A recursive presentation of a Polish (= separable, complete)

metric space (X, d) is a sequence r = (rg, 1, .. .) of points which is
dense in X’ and such that the following two relations are recursive:

P'(i,j, k) <= d(ri,r) <qe, Q(i,j, k) <= d(r,r) < q

e Recursively presented Polish metric space: (X, d,r)
= The relations P", Q" determine (X,d,r) up to isometry

e Relativization: For any € € V, r is an e-recursive presentation of
(X, d) if the relations P", Q" are recursive in &

=- Every Polish metric space has an e-recursive presentation, for
some ¢ € N (Used to apply results of EDST to all Polish metric spaces)
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Examples (with natural metrics and presentations)
= {0,...,m} and N with d(n, k) =1 for n # k,
R, Baire space N, Cantor space C = (N — {0,1}) c NV

= Products X x Y, X x Y x Z,... of recursively presented
metric spaces (with either of the standard product metrics)

= C[0,1] = {f : [0,1] — R : f is continuous} (with the sup norm)

e ... All “popular” Polish metric spaces have recursive presentations
(mostly immediately from their definitions)
e A Polish metric space (U, dis) is Urysohn (universal) if

for every finite metric space (X U {y}, d)
and every isometric embedding f : X — U,
there is an isomeric embedding f* : X U {y} — U which extends f

Theorem (Urysohn) Up to isometry, there is exactly one Urysohn space

= The Urysohn space has a recursive presentation
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* Open (Z£9) and semirecursive (£9) pointsets
e Coding of open balls (neighborhoods): for given (X, d,r), put
Ns = Ns(X) = {x € X : d(x,r5),) < qs),} (s €N),
where s +— ((s)o,(s)1) is a recursive surjection of N onto N x N
Def A set G C X is open (in £9(X)) if for some £ € N,
(*) G = U Ne(s):
it is semirecursive (in (X)) if (x) holds with a recursive ¢ : N — N

Z?—Normal Form A pointset P C X x ) is in Z?(X x Y) if and only if

|P(x,y) <= (3s,t)[x € Ns(X) & y € Ni(¥) & P*(s, t)]|

with a semirecursive P* C N2 (and similarly for X, X x Y x Z, ...)

= The family (X x V) depends on (X, dy,rx) and (I, dy,ry)
(but not on which of the standard metrics we choose for X' x ))
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Closure properties of X9
= 0, X are in £(X)
= The basic nbhd relation {(x,s) : x € Ns(X)} is in TI(N x &)
= Y9 is closed under &,V and 3V, P(x) <= (3t € N)Q(x, t)
Def f : X — Y is recursive if the pointset {(x,s) : f(x) € Ng())} is X9

= (x,y)—x, a—a*=Ata(t+1), (e,a)— (e)"«
(a, 1) = (a)i = (A)a((7, 1)),

are recursive, and so is x — (f(x),g(x)), if f and g are

= Y9 is closed under substitution of recursive functions

Proof. If Q(y) <= (3s)[y € Ns & R*(s)],
then Q(f(x)) < (3s)[f(x) € Ns & R*(s)]

= The composition x — g(h(x)) of recursive functions is recursive
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* Recursive Polish spaces
e A Polish space is a pair (X, 7) such that for some d,

(P1) (X,d) is a Polish (separable, complete) metric space, and
(P2) 7 = X9(X) = the open subsets of (X, d)

— What is the “recursive topology” on (X, d,r) with recursive r?
(hard to formulate the appropriate properties for £9(X'))

Def A recursive Polish space is a pair (X, F) such that for some (d,r),

(RP1) (X,d,r) is a recursively presented Polish metric space, and
(RP2) F =TIN x X) (which depends only on (X, d,r))
- F = F(X) is the frame of (X, F), its recursive topology, and
—if (RP1), (RP2) hold, then (d,r) is a compatible pair of (X, F)
= If (d1,r1), (d2,r2) are compatible pairs of (X,F), then

TUX, di,r) = (X, da, r2) =ger T5(X)

e Strong closure properties: e.g., X — HieN X,
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Pointsets and pointclasses (in recursive Polish spaces)
e A pointset is any subset P C X’ of a recursive Polish space

(formally a pair (P, X))

e A pointclass is any collection I of pointsets, e.g., X9, Z(lj,
and for any X', we set

MX)={PC X :Pecl} = the subsets of X which are (in)

e The points of ': For x € X, ‘XEF = {s:xeNS(X)}EI"

x is recursive <= x € ¥} (a € X? <= a is Turing computable)
e The arithmetical pointclasses are defined inductively from %9,
Me=-%k Tpa=3"N; (k>1)
0X) : P(x) <= —Q(x) for some Q € ¥I(X),
Y(X) : P(x) <= (3t € N)Q(x,t) for some @ € MJ(X x N)
0
2

(X) : P(x) < (3t e N)Qi(x,t) — (Vt e N)Q(x,1t)
for some @ € NY(X x N) and some Q = =@; € X{(X x N)
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Partial functions

e A partial function f : X — )Y is a (total) function f : Df — ),
where Df C X is the domain of convergence of f, and we write

f(x)| < xeDf, f(x)] <= x¢Ds
fx) =g(x) <= [F()T & g() 1]V @EW)f(x) =w & g(y) = w]
fFEg = (WI)f(x)] = f(x) =g(x)]

— Partial functions compose strictly, i.e.,

g(hi(x),..., hm(x)) = w
= (Gyi,--ym)m(x)=y1 & - & hp(x) = ym
& g(y1, -y ¥m) = w|
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* Locally recursive partial functions, |

Def A pointset P C X x N computes a partial function f : X — )
(where it converges) with respect to a compatible pair (d,r) for X, if

f(x)] = (inf{radius(NS) L P(x,s)} =0
& NIN() : P(x,5)} = {F(x)})
Def f : X — Y is locally recursive if it is computed by some P in ¥9

Theorem The following are equivalent for f : X — Y:

(1) f is locally recursive
(2) For some Q € ¥I(X x N),

F)L = (¥5)(F(x) € No() <= Q(x.9))

(3) Forevery Q € £3(Y x Z) thereis a P € (X x Z) such that
f(x)l = [P(x,2) <= Q(f(x),2)]
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* Locally recursive partial functions, Il

e The key characterization of local recursiveness is (2),
Theorem f: X — Y is locally recursive if for some @ € Z?()( x N)
F)L = (v5)(F(x) € No(Y) <= Q(x,5))

= ‘ If x is recursive and f(x) |, then the point f(x) is recursive‘

= Iff : X — ) is total, then f is locally recursive if it is recursive
(by any of the old definitions)

= The composition x — g(h(x)) of locally recursive partial
functions is locally recursive

Theorem (Recursion and continuity) A function f : X — ) is
continuous if and only if there is a locally recursive f* : N x X — Y
and some ¢ € N so that‘ f(x)="~"(e,x) (xe X)‘

e It is not always possible to insure that f* : N'x X — ) is total
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The Refined Surjection Theorem

Theorem (Classical) For every Polish space X, there is a
continuous function m : N'— X and a closed set F C N such that
7 is one-to-one on F, w[F] = X, and the inverse m=% : X~ F s
Borel measurable

Theorem (Effective) For every recursive Polish space X, there is a
total recursive function ™ : N'— X and a 1§ set F C N such that
7 is one-to-one on F, n[F] = X and the inverse =1 : X —» F is
Y9-recursive, i.e., the pointset {(x,s) : 7~ (x) € Ns(N)N F} is 3

e Proof is by a direct, effective construction

e The theorem makes it possible in many cases to prove results for
N and then “transfer’” them to every space
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Extending the domain of convergence

Theorem (Classical) Suppose X', ) are Polish spaces, A C X, and
f:A— Y is continuous (with the induced topology on A);
then there is a set A* such that

(1) ACA* C X,

(2) A* is a Gs-set, i.e.,, A* =)
(3) A is dense in A*; and

(4) there is an extension of f to some continuous ® : A* — )
Theorem (Effective) Every locally recursive partial function

f: X — Y has a locally recursive extension  : X — ) whose
domain of convergence {x : ®(x)|} is N3

nery An with each A, open;

e The classical result follows from the relativized version of the
effective theorem, taking A* = {x : ®(x) | } N closure(A)

e The effective result cannot be improved to insure that {x : f(x)|}
is dense in {x : ®(x) ]}, because closure(A) need not be NI
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Proof of the Extension Theorem for local recursion

Theorem Every locally recursive partial function f : X — ) has a
locally recursive extension ® : X — ) whose domain of
convergence {x : ®(x) |} is N3

Fix X', ) and for any P € Z9(X x N) define ® = XY : X —~ Y by
®(x)| < inf{radius(Ns) : P(x,s)} =0
& (M{Ne(Y) : P(x,t)} is a singleton,

®(x) = the unique y in N{N:(Y): P(x,t)}
= O js locally recursive, as it is computed by P

:Foranyf:XAy,‘Pcomputesf = fgcb\

= {x:®(x)|}is NI, because

d(x)] <= (Vs,t)[[P(x,s) & P(x,t)] = NsN N # 0]
& (Vn)(3s)[P(x,s) & radius(Ns) < 27"
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Is it recursion or just “effective continuity”?

Theorem (Primitive recursion) If g and h are locally recursive on
the appropriate spaces and f : N x X — W s defined by

£(0,x) = g(x),
f(t+1,x) = h(f(t,x), t,x),

then f is also locally recursive

e The usual proofs for N (via Dedekind’s analysis of recursive
definition) or the attempt to show directly that f is effectively
continuous are not easy to carry out

e We develop an alternative approach which also works for nested,
double, ..., recursion as well as effective transfinite recursion.

e It is a very general, fundamental tool of EDST
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* Parametrized pointclasses

Def A pointclass I is parametrized if it is closed under (total)
recursive substitutions and for every X, there is some
H € T(N x X) which enumerates I'(X), i.e.,

(P ET(X) < (Fe)[P = He = {x: H(e,x)}]]
= For every X and k > 1, £9(X),N(X) are parametrized

Def A pointset G € (N x X) is a (good) parametrization of
r(X) (in N), if for every P € (N x X), there is a total recursive

SP: N — N such that | P(a, x) <= G(SF(a),x)

Theorem A If T is parametrized, then every ['(X') has a parametrization

Theorem B If I is closed under recursive substitutions and
G € T(NV x X) is a parametrization of ['(X), then

[P EeT(X) <= (I recursive e € N)[P = G. = {x: G(c,x)}]
e We think of € as a code (name) of P (relative to G)
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Proofs of Theorems A and B on the preceding slide

Theorem A If T is parametrized, then every ['(X) has a parametrization

Proof The hypothesis gives us some H € I'(N x (N x X)) such that

Pel(N xX) < (Fe)[P = He = {(a,x) : H(e, (e, x))}]

Put ‘ G(a,x) <= H(a(0),(a",x if P = He, then

)]
P(a,x) <= H(e,(a,x)) < G((e) " a,x) and the required
conclusion holds with SP(a) = (e) " a

Theorem B If T is closed under recursive substitutions and
G € T(NV x X) is a parametrization of [(X), then

PeTl(X) < (3 recursive e € N)[P = G. = {x: G(e,x)}]

Proof For the non-trivial (=) direction, let Q(«, x) <= P(x)
and take ¢ = S?((At)0)
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* The 2nd Recursion Theorem

Theorem (2nd RT) If T is parametrized, G parametrizes ['(X) and
P € T(N x X), then there is a recursive € € N such that

(+) P(E x) < G(&x)

Proof. Let ‘a — ((a)o, (@)1) ‘ be a recursive surjection of A/ onto

N x N with inverse ‘ (o, B) — (a, B) ‘

let H e (N x (N x X)) parametrize (N x X), set

Q(a, x) <= H((@)o; (()1,x))

and let S be recursive such that

Qa,x) — G(SQ(a), x)

Now P(S®(a),x) <= H(eo,(a,x)) (with a recursive o)
= Q({c0,),x) <= G(S({c0, @), x)
and (%) holds with &= S®({(sg, o))
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* The Kleene calculus for local recursion

e For any two spaces X, ), let G C N x (X x N) be a
parametrization of ZI(X x N), let G*((¢,x),s) <= G(&,(x,s))

and set {e}(x) = {e}¥ 7Y (x) = dg- (e, %)
by the construction in the proof of the Extension Theorem
= The partial function (g, x) — {e}*=Y(x) is locally recursive

= f : X — Y is locally recursive if and only if there is a recursive
e € N such that | f(x)| = f(x) = {}(x)]

S-Theorem If f : N x X — Y is locally recursive, then there is a total,

recursive ST : N' — N such that | f(o, x)| = [f(c, x) = {ST(a)}(x)]

Theorem (2nd RT for partial functions) For every locally recursive
f: N xX —Y, there is a recursive € € N such that

FENL = (18} = FE)
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Primitive recursion preserves local recursiveness

Theorem (Primitive recursion) If g and h are locally recursive on
the appropriate spaces and f : N x X — W s defined by

f(0,x) = g(x),
f(t+1,x) = h(f(t,x),t,x),

then f is also locally recursive

Proof. By the 2nd RT (for partial functions), there is a a recursive
g € N such that (when the partial function on the right converges)

&), if t=0,
{E}(t,x) = {h({é}(t —1,x),t —1,x) otherwise

Proof that ‘ f(t,x)] = f(t,x)={e}(t,x) ‘ is by an easy
induction on t
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