# Effective Descriptive Set Theory what it is about 

## Lecture 1, Recursion in Polish spaces

Yiannis N. Moschovakis<br>UCLA and University of Athens www.math.ucla.edu/~ynm

Winter school in Hejnice, Czech Republic, 30 January - 6 February, 2016

## The child of two fields

- Classical descriptive set theory, 1895 -

Borel, Baire, Hadamard, Lebesgue 1905, Lusin, Suslin, Novikov, ... Definability theory on the continuum at first represented by
$\mathcal{R}=$ the real numbers, $\quad \mathcal{N}=$ Baire space $=(\mathbb{N} \rightarrow \mathbb{N})$
with $\mathbb{N}=\{0,1, \ldots\}$, later studied on Polish spaces

- Hyperarithmetical computability on $\mathbb{N}, 1950$ Martin Davis, Mostowski, Kleene 1955, Spector, . . .

Common motivation (after Lebesgue):

* Constructively defined sets and functions should have special properties that distinguish them from arbitrary ones
- Effective descriptive set theory (EDST): a common extension, on recursive Polish spaces, with applications to both (and other fields)


## Outline

## Lecture 1. Recursion in Polish spaces

Lecture 2. Effective Borel, analytic and co-analytic pointsets
Lecture 3. Structure theory for pointclasses

- Primary sources for the lectures (posted on my homepage): Descriptive set theory, ynm, 1980, 2nd edition 2009
Classical descriptive set theory as a refinement of effective descriptive set theory, ynm, 2010
Kleene's amazing second recursion theorem, ynm, 2010
Notes on effective descriptive set theory, Gregoriades and ynm (in preparation)
- I will try to give an elementary introduction to some of the fundamental notions, ideas and methods of proof specific to EDST not to cover a large part of the field, recent results or applications
- There are several proofs on the slides that I will skip in the lectures


## EDST as a recursion theory: what comes first?

- In classical recursion (computability) theory on $\mathbb{N}$ and $\mathcal{N}$, we typically define
first the recursive partial functions $f: \mathbb{N}^{n} \times \mathcal{N}^{k} \rightharpoonup \mathbb{N}$
next the semirecursive (r.e.) relations $P \subseteq \mathbb{N}^{n} \times \mathcal{N}^{k}$
(the domains of convergence of recursive partial functions)
and then the arithmetical and analytical relations, etc
- In Polish recursion theory we must reverse the order: define first the semirecursive relations (pointsets) $P \subseteq \mathcal{X}$
next the locally recursive partial functions $f: \mathcal{X} \rightharpoonup \mathcal{Y}$ (whose domains of convergence are arbitrary)
and then the arithmetical and analytical relations, etc
(and we must define recursive Polish spaces, which include $\mathbb{N}, \mathcal{N}, \mathcal{R}$ )
- Emil Post followed this second order of definitions for recursion on $\mathbb{N}$


## 夫 Recursively presented Polish metric spaces

- Fix a recursive enumeration $q_{0}, q_{1}, \ldots$ of the rational numbers $\mathbb{Q}$,
i.e., such that $k \mapsto \operatorname{sign}\left(q_{k}\right)$, num $\left(q_{k}\right), \operatorname{den}\left(q_{k}\right)$ are recursive

Def A recursive presentation of a Polish (= separable, complete) metric space $(\mathcal{X}, d)$ is a sequence $\mathbf{r}=\left(r_{0}, r_{1}, \ldots\right)$ of points which is dense in $\mathcal{X}$ and such that the following two relations are recursive:

$$
P^{\mathrm{r}}(i, j, k) \Longleftrightarrow d\left(r_{i}, r_{j}\right) \leq q_{k}, \quad Q^{r}(i, j, k) \Longleftrightarrow d\left(r_{i}, r_{j}\right)<q_{k}
$$

- Recursively presented Polish metric space: $(\mathcal{X}, \boldsymbol{d}, \mathbf{r})$
$\Rightarrow$ The relations $P^{\mathbf{r}}, Q^{\mathbf{r}}$ determine $(\mathcal{X}, d, \mathbf{r})$ up to isometry
- Relativization: For any $\varepsilon \in \mathcal{N}, \mathbf{r}$ is an $\varepsilon$-recursive presentation of $(\mathcal{X}, d)$ if the relations $P^{r}, Q^{r}$ are recursive in $\varepsilon$
$\Rightarrow$ Every Polish metric space has an $\varepsilon$-recursive presentation, for some $\varepsilon \in \mathcal{N}$ (Used to apply results of EDST to all Polish metric spaces)


## Examples (with natural metrics and presentations)

$\Rightarrow\{0, \ldots, m\}$ and $\mathbb{N}$ with $d(n, k)=1$ for $n \neq k$,
$\mathcal{R}$, Baire space $\mathcal{N}$, Cantor space $\mathcal{C}=(\mathbb{N} \rightarrow\{0,1\}) \subset \mathcal{N}$
$\Rightarrow$ Products $\mathcal{X} \times \mathcal{Y}, \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}, \ldots$ of recursively presented metric spaces (with either of the standard product metrics)
$\Rightarrow C[0,1]=\{f:[0,1] \rightarrow \mathbb{R}: f$ is continuous $\}$ (with the sup norm)

- ... All "popular" Polish metric spaces have recursive presentations (mostly immediately from their definitions)
- A Polish metric space $\left(\mathcal{U}, d_{\mathcal{U}}\right)$ is Urysohn (universal) if for every finite metric space $(X \cup\{y\}, d)$ and every isometric embedding $f: X \mapsto \mathcal{U}$, there is an isomeric embedding $f^{*}: X \cup\{y\} \longmapsto \mathcal{U}$ which extends $f$

Theorem (Urysohn) Up to isometry, there is exactly one Urysohn space
$\Rightarrow$ The Urysohn space has a recursive presentation

## $\star$ Open $\left(\boldsymbol{\Sigma}_{1}^{0}\right)$ and semirecursive $\left(\Sigma_{1}^{0}\right)$ pointsets

- Coding of open balls (neighborhoods): for given $(\mathcal{X}, d, r)$, put

$$
N_{s}=N_{s}(\mathcal{X})=\left\{x \in \mathcal{X}: d\left(x, r_{(s)_{0}}\right)<q_{(s)_{1}}\right\} \quad(s \in \mathbb{N}),
$$

where $s \mapsto\left((s)_{0},(s)_{1}\right)$ is a recursive surjection of $\mathbb{N}$ onto $\mathbb{N} \times \mathbb{N}$
Def $A$ set $G \subseteq \mathcal{X}$ is open (in $\boldsymbol{\Sigma}_{1}^{0}(\mathcal{X})$ ) if for some $\varepsilon \in \mathcal{N}$,
(*)

$$
G=\bigcup_{s} N_{\varepsilon(s)}
$$

it is semirecursive (in $\Sigma_{1}^{0}(\mathcal{X})$ ) if $(*)$ holds with a recursive $\varepsilon: \mathbb{N} \rightarrow \mathbb{N}$
$\Sigma_{1}^{0}$-Normal Form A pointset $P \subseteq \mathcal{X} \times \mathcal{Y}$ is in $\Sigma_{1}^{0}(\mathcal{X} \times \mathcal{Y})$ if and only if

$$
P(x, y) \Longleftrightarrow(\exists s, t)\left[x \in N_{s}(\mathcal{X}) \& y \in N_{t}(\mathcal{Y}) \& P^{*}(s, t)\right]
$$

with a semirecursive $P^{*} \subseteq \mathbb{N}^{2} \quad$ (and similarly for $\mathcal{X}, \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}, \ldots$ )
$\Rightarrow$ The family $\Sigma_{1}^{0}(\mathcal{X} \times \mathcal{Y})$ depends on $\left(\mathcal{X}, d_{\mathcal{X}}, \mathbf{r}_{\mathcal{X}}\right)$ and $\left(\mathcal{Y}, d_{\mathcal{Y}}, \mathbf{r}_{\mathcal{Y}}\right)$ (but not on which of the standard metrics we choose for $\mathcal{X} \times \mathcal{Y}$ )

## Closure properties of $\Sigma_{1}^{0}$

$\Rightarrow \emptyset, \mathcal{X}$ are in $\Sigma_{1}^{0}(\mathcal{X})$
$\Rightarrow$ The basic nbhd relation $\left\{(x, s): x \in N_{s}(\mathcal{X})\right\}$ is in $\Sigma_{1}^{0}(\mathbb{N} \times \mathcal{X})$
$\Rightarrow \Sigma_{1}^{0}$ is closed under $\&, \vee$ and $\exists^{\mathbb{N}}, P(x) \Longleftrightarrow(\exists t \in \mathbb{N}) Q(x, t)$
Def $f: \mathcal{X} \rightarrow \mathcal{Y}$ is recursive if the pointset $\left\{(x, s): f(x) \in N_{s}(\mathcal{Y})\right\}$ is $\Sigma_{1}^{0}$
$\Rightarrow(x, y) \mapsto x, \quad \alpha \mapsto \alpha^{*}=\lambda t \alpha(t+1), \quad(e, \alpha) \mapsto\langle e\rangle^{\wedge} \alpha$

$$
(\alpha, i) \mapsto(\alpha)_{i}=(\lambda t) \alpha(\langle i, t\rangle)
$$

are recursive, and so is $x \mapsto(f(x), g(x))$, if $f$ and $g$ are
$\Rightarrow \Sigma_{1}^{0}$ is closed under substitution of recursive functions

$$
\text { Proof. If } Q(y) \Longleftrightarrow(\exists s)\left[y \in N_{s} \& R^{*}(s)\right]
$$ then $Q(f(x)) \Longleftrightarrow(\exists s)\left[f(x) \in N_{s} \& R^{*}(s)\right]$

$\Rightarrow$ The composition $x \mapsto g(h(x))$ of recursive functions is recursive

## * Recursive Polish spaces

- A Polish space is a pair $(\mathcal{X}, \mathcal{T})$ such that for some $d$,
(P1) $(\mathcal{X}, d)$ is a Polish (separable, complete) metric space, and
(P2) $\mathcal{T}=\boldsymbol{\Sigma}_{1}^{0}(\mathcal{X})=$ the open subsets of $(\mathcal{X}, d)$
- What is the "recursive topology" on $(\mathcal{X}, d, \mathbf{r})$ with recursive $\mathbf{r}$ ? (hard to formulate the appropriate properties for $\Sigma_{1}^{0}(\mathcal{X})$ )
Def A recursive Polish space is a pair $(\mathcal{X}, \mathcal{F})$ such that for some $(d, \mathbf{r})$,
(RP1) $(\mathcal{X}, d, r)$ is a recursively presented Polish metric space, and (RP2) $\mathcal{F}=\Sigma_{1}^{0}(\mathbb{N} \times \mathcal{X}) \quad$ (which depends only on $(\mathcal{X}, d, \mathbf{r})$ )
- $\mathcal{F}=\mathcal{F}(\mathcal{X})$ is the frame of $(\mathcal{X}, \mathcal{F})$, its recursive topology, and
- if (RP1), (RP2) hold, then $(d, r)$ is a compatible pair of $(\mathcal{X}, \mathcal{F})$
$\Rightarrow$ If $\left(d_{1}, \mathbf{r}_{1}\right),\left(d_{2}, \mathbf{r}_{2}\right)$ are compatible pairs of $(\mathcal{X}, \mathcal{F})$, then

$$
\Sigma_{1}^{0}\left(\mathcal{X}, d_{1}, \mathbf{r}_{1}\right)=\Sigma_{1}^{0}\left(\mathcal{X}, d_{2}, \mathbf{r}_{2}\right)=\operatorname{def} \Sigma_{1}^{0}(\mathcal{X})
$$

- Strong closure properties: e.g., $\mathcal{X} \mapsto \prod_{i \in \mathbb{N}} \mathcal{X}, \quad \mathcal{X} \mapsto \mathcal{X}^{<\omega}$


## Pointsets and pointclasses (in recursive Polish spaces)

- A pointset is any subset $P \subseteq \mathcal{X}$ of a recursive Polish space (formally a pair $(P, \mathcal{X})$ )
- A pointclass is any collection $\Gamma$ of pointsets, e.g., $\Sigma_{1}^{0}, \boldsymbol{\Sigma}_{1}^{0}$, and for any $\mathcal{X}$, we set

$$
\Gamma(\mathcal{X})=\{P \subseteq \mathcal{X}: P \in \Gamma\}=\text { the subsets of } \mathcal{X} \text { which are (in) } \Gamma
$$

- The points of $\Gamma$ : For $x \in \mathcal{X}, \quad x \in \Gamma \Longleftrightarrow\left\{s: x \in N_{s}(\mathcal{X})\right\} \in \Gamma$ $x$ is recursive $\Longleftrightarrow x \in \Sigma_{1}^{0} \quad\left(\alpha \in \Sigma_{1}^{0} \Longleftrightarrow \alpha\right.$ is Turing computable)
- The arithmetical pointclasses are defined inductively from $\Sigma_{1}^{0}$,

$$
\Pi_{k}^{0}=\neg \Sigma_{k}^{0}, \quad \Sigma_{k+1}^{0}=\exists^{\mathbb{N}} \Pi_{k}^{0} \quad(k \geq 1)
$$

$\Pi_{1}^{0}(\mathcal{X}): P(x) \Longleftrightarrow \neg Q(x)$ for some $Q \in \Sigma_{1}^{0}(\mathcal{X})$,
$\Sigma_{2}^{0}(\mathcal{X}): P(x) \Longleftrightarrow(\exists t \in \mathbb{N}) Q(x, t)$ for some $Q \in \Pi_{1}^{0}(\mathcal{X} \times \mathbb{N})$
$\Pi_{2}^{0}(\mathcal{X}): P(x) \Longleftrightarrow \neg(\exists t \in \mathbb{N}) Q_{1}(x, t) \Longleftrightarrow(\forall t \in \mathbb{N}) Q(x, t)$
for some $Q_{1} \in \Pi_{1}^{0}(\mathcal{X} \times \mathbb{N})$ and some $Q=\neg Q_{1} \in \Sigma_{1}^{0}(\mathcal{X} \times \mathbb{N})$

## Partial functions

- A partial function $f: \mathcal{X} \rightharpoonup \mathcal{Y}$ is a (total) function $f: D_{f} \rightarrow \mathcal{Y}$, where $D_{f} \subseteq \mathcal{X}$ is the domain of convergence of $f$, and we write

$$
\begin{aligned}
f(x) \downarrow & \Longleftrightarrow x \in D_{f}, \quad f(x) \uparrow \Longleftrightarrow x \notin D_{f} \\
f(x)=g(x) & \Longleftrightarrow[f(x) \uparrow \& g(x) \uparrow] \vee(\exists w)[f(x)=w \& g(y)=w] \\
f & \sqsubseteq g
\end{aligned} \Longleftrightarrow(\forall x)[f(x) \downarrow \Longrightarrow f(x)=g(x)] \text { 尼 }
$$

- Partial functions compose strictly, i.e.,

$$
\begin{aligned}
& g\left(h_{1}(x), \ldots, h_{m}(x)\right)=w \\
& \qquad\left(\exists y_{1}, \ldots, y_{m}\right)\left[h_{1}(x)=y_{1} \& \cdots \& h_{m}(x)=y_{m}\right. \\
& \\
& \left.\quad \& g\left(y_{1}, \ldots, y_{m}\right)=w\right]
\end{aligned}
$$

## 夫 Locally recursive partial functions, I

Def $A$ pointset $P \subseteq \mathcal{X} \times \mathbb{N}$ computes a partial function $f: \mathcal{X} \rightharpoonup \mathcal{Y}$ (where it converges) with respect to a compatible pair $(d, \mathbf{r})$ for $\mathcal{X}$, if

$$
\begin{aligned}
f(x) \downarrow \Longrightarrow\left(\operatorname { i n f } \left\{\operatorname{radius}\left(N_{s}\right)\right.\right. & : P(x, s)\}=0 \\
\& & \left.\bigcap\left\{N_{s}(\mathcal{Y}): P(x, s)\right\}=\{f(x)\}\right)
\end{aligned}
$$

Def $f: \mathcal{X} \rightharpoonup \mathcal{Y}$ is locally recursive if it is computed by some $P$ in $\Sigma_{1}^{0}$
Theorem The following are equivalent for $f: \mathcal{X} \rightharpoonup \mathcal{Y}$ :
(1) $f$ is locally recursive
(2) For some $Q \in \Sigma_{1}^{0}(\mathcal{X} \times \mathbb{N})$,

$$
f(x) \downarrow \Longrightarrow(\forall s)\left(f(x) \in N_{s}(\mathcal{Y}) \Longleftrightarrow Q(x, s)\right)
$$

(3) For every $Q \in \Sigma_{1}^{0}(\mathcal{Y} \times \mathcal{Z})$ there is a $P \in \Sigma_{1}^{0}(\mathcal{X} \times \mathcal{Z})$ such that

$$
f(x) \downarrow \Longrightarrow[P(x, z) \Longleftrightarrow Q(f(x), z)]
$$

## 夫 Locally recursive partial functions, II

- The key characterization of local recursiveness is (2),

Theorem $f: \mathcal{X} \rightharpoonup \mathcal{Y}$ is locally recursive if for some $Q \in \Sigma_{1}^{0}(\mathcal{X} \times \mathbb{N})$

$$
f(x) \downarrow \Longrightarrow(\forall s)\left(f(x) \in N_{s}(\mathcal{Y}) \Longleftrightarrow Q(x, s)\right)
$$

$\Rightarrow$ If $x$ is recursive and $f(x) \downarrow$, then the point $f(x)$ is recursive
$\Rightarrow$ If $f: \mathcal{X} \rightarrow \mathcal{Y}$ is total, then $f$ is locally recursive if it is recursive (by any of the old definitions)
$\Rightarrow$ The composition $x \mapsto g(h(x))$ of locally recursive partial functions is locally recursive

Theorem (Recursion and continuity) A function $f: \mathcal{X} \rightarrow \mathcal{Y}$ is continuous if and only if there is a locally recursive $f^{*}: \mathcal{N} \times \mathcal{X} \rightharpoonup \mathcal{Y}$ and some $\varepsilon \in \mathcal{N}$ so that $f(x)=f^{*}(\varepsilon, x) \quad(x \in \mathcal{X})$

- It is not always possible to insure that $f^{*}: \mathcal{N} \times \mathcal{X} \rightharpoonup \mathcal{Y}$ is total


## The Refined Surjection Theorem

Theorem (Classical) For every Polish space $\mathcal{X}$, there is a continuous function $\pi: \mathcal{N} \rightarrow \mathcal{X}$ and a closed set $F \subseteq \mathcal{N}$ such that $\pi$ is one-to-one on $F, \pi[F]=\mathcal{X}$, and the inverse $\pi^{-1}: \mathcal{X} \longrightarrow F$ is Borel measurable

Theorem (Effective) For every recursive Polish space $\mathcal{X}$, there is a total recursive function $\pi: \mathcal{N} \rightarrow \mathcal{X}$ and a $\Pi_{1}^{0}$ set $F \subseteq \mathcal{N}$ such that $\pi$ is one-to-one on $F, \pi[F]=\mathcal{X}$ and the inverse $\pi^{-1}: \mathcal{X} \multimap F$ is $\Sigma_{2}^{0}$-recursive, i.e., the pointset $\left\{(x, s): \pi^{-1}(x) \in N_{s}(\mathcal{N}) \cap F\right\}$ is $\Sigma_{2}^{0}$

- Proof is by a direct, effective construction
- The theorem makes it possible in many cases to prove results for $\mathcal{N}$ and then "transfer" them to every space


## Extending the domain of convergence

Theorem (Classical) Suppose $\mathcal{X}, \mathcal{Y}$ are Polish spaces, $A \subset \mathcal{X}$, and $f: A \rightarrow \mathcal{Y}$ is continuous (with the induced topology on $A$ ); then there is a set $A^{*}$ such that
(1) $A \subseteq A^{*} \subseteq \mathcal{X}$;
(2) $A^{*}$ is a $G_{\delta}$-set, i.e., $A^{*}=\bigcap_{n \in \mathbb{N}} A_{n}$ with each $A_{n}$ open;
(3) $A$ is dense in $A^{*}$; and
(4) there is an extension of $f$ to some continuous $\Phi: A^{*} \rightarrow \mathcal{Y}$

Theorem (Effective) Every locally recursive partial function $f: \mathcal{X} \rightharpoonup \mathcal{Y}$ has a locally recursive extension $\Phi: \mathcal{X} \rightharpoonup \mathcal{Y}$ whose domain of convergence $\{x: \Phi(x) \downarrow\}$ is $\Pi_{2}^{0}$

- The classical result follows from the relativized version of the effective theorem, taking $A^{*}=\{x: \Phi(x) \downarrow\} \cap \operatorname{closure}(A)$
- The effective result cannot be improved to insure that $\{x: f(x) \downarrow\}$ is dense in $\{x: \Phi(x) \downarrow\}$, because closure $(A)$ need not be $\Pi_{2}^{0}$


## Proof of the Extension Theorem for local recursion

Theorem Every locally recursive partial function $f: \mathcal{X} \rightharpoonup \mathcal{Y}$ has a locally recursive extension $\Phi: \mathcal{X} \rightharpoonup \mathcal{Y}$ whose domain of convergence $\{x: \Phi(x) \downarrow\}$ is $\Pi_{2}^{0}$
Fix $\mathcal{X}, \mathcal{Y}$ and for any $P \in \Sigma_{1}^{0}(\mathcal{X} \times \mathbb{N})$ define $\Phi=\Phi_{P}^{\mathcal{X}} \rightarrow \mathcal{Y}: \mathcal{X} \rightharpoonup \mathcal{Y}$ by

$$
\begin{aligned}
& \Phi(x) \downarrow \Longleftrightarrow \inf \left\{\operatorname{radius}\left(N_{s}\right): P(x, s)\right\}=0 \\
& \& \bigcap\left\{N_{t}(\mathcal{Y}): P(x, t)\right\} \text { is a singleton, } \\
& \Phi(x)=\text { the unique } y \text { in } \bigcap\left\{N_{t}(\mathcal{Y}): P(x, t)\right\}
\end{aligned}
$$

$\Rightarrow \Phi$ is locally recursive, as it is computed by $P$
$\Rightarrow$ For any $f: \mathcal{X} \rightharpoonup \mathcal{Y}, P$ computes $f \Longleftrightarrow f \sqsubseteq \Phi$
$\Rightarrow\{x: \Phi(x) \downarrow\}$ is $\Pi_{2}^{0}$, because $\Phi(x) \downarrow \Longleftrightarrow(\forall s, t)\left[[P(x, s) \& P(x, t)] \Longrightarrow N_{s} \cap N_{t} \neq \emptyset\right]$ \& $(\forall n)(\exists s)\left[P(x, s) \& \operatorname{radius}\left(N_{s}\right)<2^{-n}\right]$

## Is it recursion or just "effective continuity"?

Theorem (Primitive recursion) If $g$ and $h$ are locally recursive on the appropriate spaces and $f: \mathbb{N} \times \mathcal{X} \rightharpoonup \mathcal{W}$ is defined by

$$
\begin{aligned}
f(0, x) & =g(x), \\
f(t+1, x) & =h(f(t, x), t, x)
\end{aligned}
$$

then $f$ is also locally recursive

- The usual proofs for $\mathbb{N}$ (via Dedekind's analysis of recursive definition) or the attempt to show directly that $f$ is effectively continuous are not easy to carry out
- We develop an alternative approach which also works for nested, double, ..., recursion as well as effective transfinite recursion.
- It is a very general, fundamental tool of EDST


## * Parametrized pointclasses

Def A pointclass $\Gamma$ is parametrized if it is closed under (total) recursive substitutions and for every $\mathcal{X}$, there is some $H \in \Gamma(\mathbb{N} \times \mathcal{X})$ which enumerates $\Gamma(\mathcal{X})$, i.e.,

$$
P \in \Gamma(\mathcal{X}) \Longleftrightarrow(\exists e)\left[P=H_{e}=\{x: H(e, x)\}\right]
$$

$\Rightarrow$ For every $\mathcal{X}$ and $k \geq 1, \Sigma_{k}^{0}(\mathcal{X}), \Pi_{k}^{0}(\mathcal{X})$ are parametrized
Def A pointset $G \in \Gamma(\mathcal{N} \times \mathcal{X})$ is a (good) parametrization of $\Gamma(\mathcal{X})$ (in $\mathcal{N}$ ), if for every $P \in \Gamma(\mathcal{N} \times \mathcal{X})$, there is a total recursive $\mathrm{S}^{P}: \mathcal{N} \rightarrow \mathcal{N}$ such that $P(\alpha, x) \Longleftrightarrow G\left(\mathrm{~S}^{P}(\alpha), x\right)$

Theorem A If $\Gamma$ is parametrized, then every $\Gamma(\mathcal{X})$ has a parametrization Theorem B If $\Gamma$ is closed under recursive substitutions and $G \in \Gamma(\mathcal{N} \times \mathcal{X})$ is a parametrization of $\Gamma(\mathcal{X})$, then

$$
P \in \Gamma(\mathcal{X}) \Longleftrightarrow(\exists \text { recursive } \varepsilon \in \mathcal{N})\left[P=G_{\varepsilon}=\{x: G(\varepsilon, x)\}\right]
$$

- We think of $\varepsilon$ as a code (name) of $P$ (relative to $G$ )


## Proofs of Theorems $A$ and $B$ on the preceding slide

Theorem A If $\Gamma$ is parametrized, then every $\Gamma(\mathcal{X})$ has a parametrization Proof The hypothesis gives us some $H \in \Gamma(\mathbb{N} \times(\mathcal{N} \times \mathcal{X}))$ such that

$$
P \in \Gamma(\mathcal{N} \times \mathcal{X}) \Longleftrightarrow(\exists e)\left[P=H_{e}=\{(\alpha, x): H(e,(\alpha, x))\}\right]
$$

Put $G(\alpha, x) \Longleftrightarrow H\left(\alpha(0),\left(\alpha^{*}, x\right)\right)$; if $P=H_{e}$, then $P(\alpha, x) \Longleftrightarrow H(e,(\alpha, x)) \Longleftrightarrow G\left(\langle e\rangle^{\wedge} \alpha, x\right)$ and the required conclusion holds with $\mathrm{S}^{P}(\alpha)=\langle e\rangle^{\wedge} \alpha$

Theorem B If $\Gamma$ is closed under recursive substitutions and $G \in \Gamma(\mathcal{N} \times \mathcal{X})$ is a parametrization of $\Gamma(\mathcal{X})$, then

$$
P \in \Gamma(\mathcal{X}) \Longleftrightarrow(\exists \text { recursive } \varepsilon \in \mathcal{N})\left[P=G_{\varepsilon}=\{x: G(\varepsilon, x)\}\right]
$$

Proof For the non-trivial $(\Rightarrow)$ direction, let $Q(\alpha, x) \Longleftrightarrow P(x)$ and take $\varepsilon=S^{Q}((\lambda t) 0)$

## * The 2nd Recursion Theorem

Theorem (2nd RT) If $\Gamma$ is parametrized, $G$ parametrizes $\Gamma(\mathcal{X})$ and $P \in \Gamma(\mathcal{N} \times \mathcal{X})$, then there is a recursive $\widetilde{\varepsilon} \in \mathcal{N}$ such that
(*)

$$
P(\widetilde{\varepsilon}, x) \Longleftrightarrow G(\widetilde{\varepsilon}, x)
$$

Proof. Let $\alpha \mapsto\left((\alpha)_{0},(\alpha)_{1}\right)$ be a recursive surjection of $\mathcal{N}$ onto $\mathcal{N} \times \mathcal{N}$ with inverse $(\alpha, \beta) \mapsto\langle\alpha, \beta\rangle$, let $H \in \Gamma(\mathcal{N} \times(\mathcal{N} \times \mathcal{X}))$ parametrize $\Gamma(\mathcal{N} \times \mathcal{X})$, set

$$
Q(\alpha, x) \Longleftrightarrow H\left((\alpha)_{0},\left((\alpha)_{1}, x\right)\right)
$$

and let $S^{Q}$ be recursive such that $Q(\alpha, x) \Longleftrightarrow G\left(S^{Q}(\alpha), x\right)$
Now $P\left(S^{Q}(\alpha), x\right) \Longleftrightarrow H\left(\varepsilon_{0},(\alpha, x)\right) \quad$ (with a recursive $\left.\varepsilon_{0}\right)$

$$
\Longleftrightarrow Q\left(\left\langle\varepsilon_{0}, \alpha\right\rangle, x\right) \Longleftrightarrow G\left(\mathrm{~S}^{Q}\left(\left\langle\varepsilon_{0}, \alpha\right\rangle\right), x\right)
$$

and $(*)$ holds with $\widetilde{\varepsilon}=S^{Q}\left(\left\langle\varepsilon_{0}, \varepsilon_{0}\right\rangle\right)$

## * The Kleene calculus for local recursion

- For any two spaces $\mathcal{X}, \mathcal{Y}$, let $G \subseteq \mathcal{N} \times(\mathcal{X} \times \mathbb{N})$ be a parametrization of $\Sigma_{1}^{0}(\mathcal{X} \times \mathbb{N})$, let $G^{*}((\varepsilon, x), s) \Longleftrightarrow G(\varepsilon,(x, s))$

$$
\text { and set }\{\varepsilon\}(x)=\{\varepsilon\}^{\mathcal{X}-\mathcal{Y}}(x)=\Phi_{G^{*}}(\varepsilon, x)
$$

by the construction in the proof of the Extension Theorem
$\Rightarrow$ The partial function $(\varepsilon, x) \mapsto\{\varepsilon\}^{\mathcal{X}-\mathcal{Y}}(x)$ is locally recursive
$\Rightarrow f: \mathcal{X} \rightharpoonup \mathcal{Y}$ is locally recursive if and only if there is a recursive $\varepsilon \in \mathcal{N}$ such that $f(x) \downarrow \Longrightarrow f(x)=\{\varepsilon\}(x)$

S-Theorem If $f: \mathcal{N} \times \mathcal{X} \rightharpoonup \mathcal{Y}$ is locally recursive, then there is a total, recursive $\mathrm{S}^{f}: \mathcal{N} \rightarrow \mathcal{N}$ such that $f(\alpha, x) \downarrow \Longrightarrow\left[f(\alpha, x)=\left\{S^{f}(\alpha)\right\}(x)\right]$

Theorem (2nd RT for partial functions) For every locally recursive $f: \mathcal{N} \times \mathcal{X} \rightharpoonup \mathcal{Y}$, there is a recursive $\widetilde{\varepsilon} \in \mathcal{N}$ such that

$$
f(\widetilde{\varepsilon}, x) \downarrow \Longrightarrow(\{\widetilde{\varepsilon}\}(x)=f(\widetilde{\varepsilon}, x))
$$

## Primitive recursion preserves local recursiveness

Theorem (Primitive recursion) If $g$ and $h$ are locally recursive on the appropriate spaces and $f: \mathbb{N} \times \mathcal{X} \rightharpoonup \mathcal{W}$ is defined by

$$
\begin{aligned}
f(0, x) & =g(x) \\
f(t+1, x) & =h(f(t, x), t, x)
\end{aligned}
$$

then $f$ is also locally recursive
Proof. By the 2nd RT (for partial functions), there is a a recursive $\widetilde{\varepsilon} \in \mathcal{N}$ such that (when the partial function on the right converges)

$$
\{\widetilde{\varepsilon}\}(t, x)= \begin{cases}g(x), & \text { if } t=0 \\ h(\{\widetilde{\varepsilon}\}(t-1, x), t-1, x) & \text { otherwise }\end{cases}
$$

Proof that $f(t, x) \downarrow \Longrightarrow f(t, x)=\{\tilde{\varepsilon}\}(t, x)$ is by an easy induction on $t$

