Effective Descriptive Set Theory what it is about

Lecture 1, Recursion in Polish spaces

Yiannis N. Moschovakis UCLA and University of Athens www.math.ucla.edu/~ynm

Winter school in Hejnice, Czech Republic, 30 January – 6 February, 2016

The child of two fields

• Classical descriptive set theory, 1895 -

Borel, Baire, Hadamard, Lebesgue 1905, Lusin, Suslin, Novikov, ... Definability theory on the continuum at first represented by

 $\mathcal{R} =$ the real numbers, $\mathcal{N} =$ Baire space $= (\mathbb{N} \rightarrow \mathbb{N})$

with $\mathbb{N}=\{0,1,\ldots\},$ later studied on Polish spaces

• Hyperarithmetical computability on ℕ, 1950 – Martin Davis, Mostowski, Kleene 1955, Spector, ...

Common motivation (after Lebesgue): **★** Constructively defined sets and functions should have special properties that distinguish them from arbitrary ones

• Effective descriptive set theory (EDST): a common extension, on recursive Polish spaces, with applications to both (and other fields)

Outline

Lecture 1. Recursion in Polish spaces

Lecture 2. Effective Borel, analytic and co-analytic pointsets

Lecture 3. Structure theory for pointclasses

 Primary sources for the lectures (posted on my homepage): Descriptive set theory, ynm, 1980, 2nd edition 2009 Classical descriptive set theory as a refinement of effective descriptive set theory, ynm, 2010 Kleene's amazing second recursion theorem, ynm, 2010

Notes on effective descriptive set theory, Gregoriades and ynm (in preparation)

• I will try to give an elementary introduction to some of the fundamental notions, ideas and methods of proof specific to EDST not to cover a large part of the field, recent results or applications

• There are several proofs on the slides that I will skip in the lectures

EDST as a recursion theory: what comes first?

– In classical recursion (computability) theory on $\mathbb N$ and $\mathcal N,$ we typically define

first the recursive partial functions $f:\mathbb{N}^n imes\mathcal{N}^k woheadrightarrow \mathbb{N}$

next the semirecursive (r.e.) relations $P \subseteq \mathbb{N}^n \times \mathcal{N}^k$ (the domains of convergence of recursive partial functions) and then the arithmetical and analytical relations, etc

- In Polish recursion theory we must reverse the order: define first the semirecursive relations (pointsets) $P \subseteq \mathcal{X}$

next the locally recursive partial functions $f : \mathcal{X} \rightarrow \mathcal{Y}$ (whose domains of convergence are arbitrary)

and then the arithmetical and analytical relations, etc

(and we must define recursive Polish spaces, which include $\mathbb{N},\mathcal{N},\mathcal{R})$

 \bullet Emil Post followed this second order of definitions for recursion on $\mathbb N$

* Recursively presented Polish metric spaces

• Fix a recursive enumeration q_0, q_1, \ldots of the rational numbers \mathbb{Q} ,

i.e., such that $k \mapsto \operatorname{sign}(q_k), \operatorname{num}(q_k), \operatorname{den}(q_k)$ are recursive

Def A recursive presentation of a Polish (= separable, complete) metric space (\mathcal{X}, d) is a sequence $\mathbf{r} = (r_0, r_1, ...)$ of points which is dense in \mathcal{X} and such that the following two relations are recursive:

$$P^{\mathbf{r}}(i,j,k) \iff d(r_i,r_j) \leq q_k, \quad Q^{\mathbf{r}}(i,j,k) \iff d(r_i,r_j) < q_k$$

- Recursively presented Polish metric space: $(\mathcal{X}, d, \mathbf{r})$
- \Rightarrow The relations $P^{\mathbf{r}}, Q^{\mathbf{r}}$ determine $(\mathcal{X}, d, \mathbf{r})$ up to isometry

• Relativization: For any $\varepsilon \in \mathcal{N}$, **r** is an ε -recursive presentation of (\mathcal{X}, d) if the relations $P^{\mathbf{r}}, Q^{\mathbf{r}}$ are recursive in ε

⇒ Every Polish metric space has an ε -recursive presentation, for some $\varepsilon \in \mathcal{N}$ (Used to apply results of EDST to all Polish metric spaces)

Examples (with natural metrics and presentations) $\Rightarrow \{0, ..., m\}$ and \mathbb{N} with d(n, k) = 1 for $n \neq k$,

 \mathcal{R} , Baire space \mathcal{N} , Cantor space $\mathcal{C} = (\mathbb{N} o \{0,1\}) \subset \mathcal{N}$

 $\Rightarrow \mathsf{Products} \ \mathcal{X} \times \mathcal{Y}, \ \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}, \dots \text{ of recursively presented} \\ \mathsf{metric spaces (with either of the standard product metrics)} \\$

 $\Rightarrow C[0,1] = \{f: [0,1] \rightarrow \mathbb{R}: f \text{ is continuous}\} \text{ (with the sup norm)}$

- ... All "popular" Polish metric spaces have recursive presentations (mostly immediately from their definitions)
- A Polish metric space $(\mathcal{U}, d_{\mathcal{U}})$ is Urysohn (universal) if

for every finite metric space $(X \cup \{y\}, d)$ and every isometric embedding $f : X \rightarrow U$, there is an isomeric embedding $f^* : X \cup \{y\} \rightarrow U$ which extends f

Theorem (Urysohn) Up to isometry, there is exactly one Urysohn space \Rightarrow The Urysohn space has a recursive presentation

***** Open (Σ_1^0) and semirecursive (Σ_1^0) pointsets

• Coding of open balls (neighborhoods): for given $(\mathcal{X}, d, \mathbf{r})$, put

$$N_s = N_s(\mathcal{X}) = \{x \in \mathcal{X} : d(x, r_{(s)_0}) < q_{(s)_1}\} \quad (s \in \mathbb{N}),$$

where $s\mapsto ((s)_0,(s)_1)$ is a recursive surjection of $\mathbb N$ onto $\mathbb N imes\mathbb N$

Def A set
$$G \subseteq \mathcal{X}$$
 is open (in $\Sigma_1^0(\mathcal{X})$) if for some $\varepsilon \in \mathcal{N}$,
(*) $G = \bigcup_s N_{\varepsilon(s)}$;

it is semirecursive (in $\Sigma_1^0(\mathcal{X})$) if (*) holds with a recursive $\varepsilon : \mathbb{N} \to \mathbb{N}$

 Σ_1^0 -Normal Form A pointset $P \subseteq \mathcal{X} \times \mathcal{Y}$ is in $\Sigma_1^0(\mathcal{X} \times \mathcal{Y})$ if and only if

$$P(x,y) \iff (\exists s,t)[x \in N_s(\mathcal{X}) \& y \in N_t(\mathcal{Y}) \& P^*(s,t)]$$

with a semirecursive $P^* \subseteq \mathbb{N}^2$ (and similarly for $\mathcal{X}, \mathcal{X} \times \mathcal{Y} \times \mathcal{Z}, \dots$)

⇒ The family $\Sigma_1^0(\mathcal{X} \times \mathcal{Y})$ depends on $(\mathcal{X}, d_{\mathcal{X}}, \mathbf{r}_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}}, \mathbf{r}_{\mathcal{Y}})$ (but not on which of the standard metrics we choose for $\mathcal{X} \times \mathcal{Y}$)

Closure properties of Σ_1^0

- $\Rightarrow \emptyset, \mathcal{X} \text{ are in } \Sigma_1^0(\mathcal{X})$
- \Rightarrow The basic nbhd relation $\{(x,s) : x \in N_s(\mathcal{X})\}$ is in $\Sigma_1^0(\mathbb{N} \times \mathcal{X})$
- $\Rightarrow \Sigma^0_1 \text{ is closed under } \&, \lor \text{ and } \exists^\mathbb{N}, \ \mathsf{P}(x) \iff (\exists t \in \mathbb{N}) Q(x,t)$

Def $f : \mathcal{X} \to \mathcal{Y}$ is recursive if the pointset $\{(x, s) : f(x) \in N_s(\mathcal{Y})\}$ is Σ_1^0

$$\Rightarrow (x, y) \mapsto x, \quad \alpha \mapsto \alpha^* = \lambda t \alpha (t+1), \quad (e, \alpha) \mapsto \langle e \rangle^{\widehat{\alpha}} \alpha \\ (\alpha, i) \mapsto (\alpha)_i = (\lambda t) \alpha (\langle i, t \rangle),$$

are recursive, and so is $x \mapsto (f(x), g(x))$, if f and g are

 $\Rightarrow \Sigma_1^0$ is closed under substitution of recursive functions

$$\begin{array}{rl} \mathsf{Proof.} \ \mathsf{lf} \ \mathsf{Q}(y) \iff (\exists s)[y \in \mathsf{N}_s \And R^*(s)], \\ & \mathsf{then} \ \mathsf{Q}(f(x)) \iff (\exists s)[f(x) \in \mathsf{N}_s \And R^*(s)] \end{array}$$

 \Rightarrow The composition $x \mapsto g(h(x))$ of recursive functions is recursive

★ Recursive Polish spaces

• A Polish space is a pair $(\mathcal{X}, \mathcal{T})$ such that for some d,

(P1) (\mathcal{X}, d) is a Polish (separable, complete) metric space, and (P2) $\mathcal{T} = \Sigma_1^0(\mathcal{X}) =$ the open subsets of (\mathcal{X}, d)

- What is the "recursive topology" on $(\mathcal{X}, d, \mathbf{r})$ with recursive \mathbf{r} ? (hard to formulate the appropriate properties for $\Sigma_1^0(\mathcal{X})$)

Def A recursive Polish space is a pair $(\mathcal{X}, \mathcal{F})$ such that for some (d, \mathbf{r}) ,

- $\mathcal{F} = \mathcal{F}(\mathcal{X})$ is the frame of $(\mathcal{X}, \mathcal{F})$, its recursive topology, and
- if (RP1), (RP2) hold, then (d, \mathbf{r}) is a compatible pair of $(\mathcal{X}, \mathcal{F})$

$$\Rightarrow If (d_1, \mathbf{r}_1), (d_2, \mathbf{r}_2) \text{ are compatible pairs of } (\mathcal{X}, \mathcal{F}), \text{ then}$$
$$\Sigma_1^0(\mathcal{X}, d_1, \mathbf{r}_1) = \Sigma_1^0(\mathcal{X}, d_2, \mathbf{r}_2) =_{\mathsf{def}} \Sigma_1^0(\mathcal{X})$$

• Strong closure properties: e.g., $\mathcal{X} \mapsto \prod_{i \in \mathbb{N}} \mathcal{X}$, $\mathcal{X} \mapsto \mathcal{X}^{<\omega}$

Pointsets and pointclasses (in recursive Polish spaces)

- A pointset is any subset P ⊆ X of a recursive Polish space (formally a pair (P, X))
- A pointclass is any collection Γ of pointsets, e.g., $\Sigma_1^0, \boldsymbol{\Sigma_1^0},$ and for any $\mathcal X,$ we set

 $\Gamma(\mathcal{X}) = \{P \subseteq \mathcal{X} : P \in \Gamma\} = \text{ the subsets of } \mathcal{X} \text{ which are (in) } \Gamma$

- The points of Γ : For $x \in \mathcal{X}$, $x \in \Gamma \iff \{s : x \in N_s(\mathcal{X})\} \in \Gamma$ x is recursive $\iff x \in \Sigma_1^0$ $(\alpha \in \Sigma_1^0 \iff \alpha \text{ is Turing computable})$
- The arithmetical pointclasses are defined inductively from Σ_1^0 ,

$$\begin{split} \Pi_k^0 &= \neg \Sigma_k^0, \quad \Sigma_{k+1}^0 = \exists^{\mathbb{N}} \Pi_k^0 \quad (k \ge 1) \\ \Pi_1^0(\mathcal{X}) &: \quad P(x) \iff \neg Q(x) \text{ for some } Q \in \Sigma_1^0(\mathcal{X}), \\ \Sigma_2^0(\mathcal{X}) &: \quad P(x) \iff (\exists t \in \mathbb{N}) Q(x, t) \text{ for some } Q \in \Pi_1^0(\mathcal{X} \times \mathbb{N}) \\ \Pi_2^0(\mathcal{X}) &: \quad P(x) \iff \neg (\exists t \in \mathbb{N}) Q_1(x, t) \iff (\forall t \in \mathbb{N}) Q(x, t) \\ & \text{ for some } Q_1 \in \Pi_1^0(\mathcal{X} \times \mathbb{N}) \text{ and some } Q = \neg Q_1 \in \Sigma_1^0(\mathcal{X} \times \mathbb{N}) \end{split}$$

Partial functions

• A partial function $f : \mathcal{X} \to \mathcal{Y}$ is a (total) function $f : D_f \to \mathcal{Y}$, where $D_f \subseteq \mathcal{X}$ is the domain of convergence of f, and we write

$$\begin{array}{ccc} f(x) \downarrow \iff x \in D_f, & f(x) \uparrow \iff x \notin D_f \\ f(x) = g(x) \iff [f(x) \uparrow \& g(x) \uparrow] \lor (\exists w) [f(x) = w \& g(y) = w] \\ f \sqsubseteq g \iff (\forall x) [f(x) \downarrow \implies f(x) = g(x)] \end{array}$$

- Partial functions compose strictly, i.e.,

$$g(h_1(x),\ldots,h_m(x)) = w$$

$$\iff (\exists y_1,\ldots,y_m)[h_1(x) = y_1 \& \cdots \& h_m(x) = y_m$$

$$\& g(y_1,\ldots,y_m) = w]$$

* Locally recursive partial functions, I

Def A pointset $P \subseteq \mathcal{X} \times \mathbb{N}$ computes a partial function $f : \mathcal{X} \rightarrow \mathcal{Y}$ (where it converges) with respect to a compatible pair (d, \mathbf{r}) for \mathcal{X} , if

$$f(x)\downarrow \implies \left(\inf\{\operatorname{radius}(N_s): P(x,s)\} = 0 \\ \& \bigcap\{N_s(\mathcal{Y}): P(x,s)\} = \{f(x)\}\right)$$

Def $f : \mathcal{X} \to \mathcal{Y}$ is locally recursive if it is computed by some P in Σ_1^0

Theorem The following are equivalent for $f : \mathcal{X} \rightharpoonup \mathcal{Y}$:

(1) f is locally recursive (2) For some $Q \in \Sigma_1^0(\mathcal{X} \times \mathbb{N})$,

$$f(x)\downarrow \implies (\forall s) \Big(f(x) \in N_s(\mathcal{Y}) \iff Q(x,s) \Big)$$

(3) For every $Q \in \Sigma_1^0(\mathcal{Y} \times \mathcal{Z})$ there is a $P \in \Sigma_1^0(\mathcal{X} \times \mathcal{Z})$ such that $f(x) \downarrow \implies [P(x, z) \iff Q(f(x), z)]$

★ Locally recursive partial functions, II

• The key characterization of local recursiveness is (2),

Theorem $f : \mathcal{X} \to \mathcal{Y}$ is locally recursive if for some $Q \in \Sigma_1^0(\mathcal{X} \times \mathbb{N})$

$$f(x) \downarrow \implies (\forall s) \Big(f(x) \in N_s(\mathcal{Y}) \iff Q(x,s) \Big)$$

 \Rightarrow | If x is recursive and $f(x)\downarrow$, then the point f(x) is recursive

 \Rightarrow If $f : \mathcal{X} \to \mathcal{Y}$ is total, then f is locally recursive if it is recursive (by any of the old definitions)

 \Rightarrow The composition $x \mapsto g(h(x))$ of locally recursive partial functions is locally recursive

Theorem (Recursion and continuity) A function $f : \mathcal{X} \to \mathcal{Y}$ is continuous if and only if there is a locally recursive $f^* : \mathcal{N} \times \mathcal{X} \to \mathcal{Y}$ and some $\varepsilon \in \mathcal{N}$ so that $f(x) = f^*(\varepsilon, x) \quad (x \in \mathcal{X})$

• It is not always possible to insure that $f^* : \mathcal{N} \times \mathcal{X} \rightharpoonup \mathcal{Y}$ is total

The Refined Surjection Theorem

Theorem (Classical) For every Polish space \mathcal{X} , there is a continuous function $\pi : \mathcal{N} \to \mathcal{X}$ and a closed set $F \subseteq \mathcal{N}$ such that π is one-to-one on F, $\pi[F] = \mathcal{X}$, and the inverse $\pi^{-1} : \mathcal{X} \rightarrowtail F$ is Borel measurable

Theorem (Effective) For every recursive Polish space \mathcal{X} , there is a total recursive function $\pi : \mathcal{N} \to \mathcal{X}$ and a Π_1^0 set $F \subseteq \mathcal{N}$ such that π is one-to-one on F, $\pi[F] = \mathcal{X}$ and the inverse $\pi^{-1} : \mathcal{X} \rightarrowtail F$ is Σ_2^0 -recursive, i.e., the pointset $\{(x, s) : \pi^{-1}(x) \in \mathsf{N}_s(\mathcal{N}) \cap F\}$ is Σ_2^0

• Proof is by a direct, effective construction

 \bullet The theorem makes it possible in many cases to prove results for ${\cal N}$ and then "transfer" them to every space

Extending the domain of convergence

Theorem (Classical) Suppose \mathcal{X}, \mathcal{Y} are Polish spaces, $A \subset \mathcal{X}$, and $f : A \to \mathcal{Y}$ is continuous (with the induced topology on A); then there is a set A^* such that

(1)
$$A \subseteq A^* \subseteq \mathcal{X}$$
;
(2) A^* is a G_{δ} -set, i.e., $A^* = \bigcap_{n \in \mathbb{N}} A_n$ with each A_n open;
(3) A is dense in A^* ; and
(4) there is an extension of f to some continuous $\Phi : A^* \to \mathcal{Y}$

Theorem (Effective) Every locally recursive partial function $f : \mathcal{X} \rightarrow \mathcal{Y}$ has a locally recursive extension $\Phi : \mathcal{X} \rightarrow \mathcal{Y}$ whose domain of convergence $\{x : \Phi(x) \downarrow\}$ is Π_2^0

• The classical result follows from the relativized version of the effective theorem, taking $A^* = \{x : \Phi(x) \downarrow\} \cap \text{closure}(A)$

• The effective result cannot be improved to insure that $\{x : f(x) \downarrow\}$ is dense in $\{x : \Phi(x) \downarrow\}$, because closure(A) need not be Π_2^0

Proof of the Extension Theorem for local recursion

Theorem Every locally recursive partial function $f : \mathcal{X} \rightarrow \mathcal{Y}$ has a locally recursive extension $\Phi : \mathcal{X} \rightarrow \mathcal{Y}$ whose domain of convergence $\{x : \Phi(x) \downarrow\}$ is Π_2^0

Fix \mathcal{X}, \mathcal{Y} and for any $P \in \Sigma_1^0(\mathcal{X} \times \mathbb{N})$ define $\Phi = \Phi_P^{\mathcal{X} o \mathcal{Y}} : \mathcal{X} o \mathcal{Y}$ by

$$\Phi(x)\downarrow \iff \inf\{\operatorname{radius}(N_s): P(x,s)\} = 0$$

& $\bigcap\{N_t(\mathcal{Y}): P(x,t)\}$ is a singleton,

 $\Phi(x) = \text{the unique } y \text{ in } \bigcap \{N_t(\mathcal{Y}) : P(x,t)\}$

 $\Rightarrow \Phi$ is locally recursive, as it is computed by P

 $\Rightarrow \textit{ For any } f: \mathcal{X} \rightharpoonup \mathcal{Y}, \ \boxed{P \textit{ computes } f \iff f \sqsubseteq \Phi}$

$$\Rightarrow \{x : \Phi(x) \downarrow\} \text{ is } \Pi_2^0, \text{ because}$$

$$\Phi(x) \downarrow \iff (\forall s, t) [[P(x, s) \& P(x, t)] \implies N_s \cap N_t \neq \emptyset]$$

$$\& (\forall n) (\exists s) [P(x, s) \& \text{ radius}(N_s) < 2^{-n}]$$

Is it recursion or just "effective continuity"?

Theorem (Primitive recursion) If g and h are locally recursive on the appropriate spaces and $f : \mathbb{N} \times \mathcal{X} \rightarrow \mathcal{W}$ is defined by

$$f(0,x) = g(x),$$

 $f(t+1,x) = h(f(t,x),t,x).$

then f is also locally recursive

• The usual proofs for \mathbb{N} (via Dedekind's analysis of recursive definition) or the attempt to show directly that f is effectively continuous are not easy to carry out

• We develop an alternative approach which also works for nested, double, ..., recursion as well as effective transfinite recursion.

• It is a very general, fundamental tool of EDST

★ Parametrized pointclasses

Def A pointclass Γ is parametrized if it is closed under (total) recursive substitutions and for every \mathcal{X} , there is some $H \in \Gamma(\mathbb{N} \times \mathcal{X})$ which enumerates $\Gamma(\mathcal{X})$, i.e.,

$$P \in \Gamma(\mathcal{X}) \iff (\exists e)[P = H_e = \{x : H(e, x)\}]$$

 \Rightarrow For every \mathcal{X} and $k \geq 1$, $\Sigma_k^0(\mathcal{X}), \Pi_k^0(\mathcal{X})$ are parametrized

Def A pointset $G \in \Gamma(\mathcal{N} \times \mathcal{X})$ is a (good) parametrization of $\Gamma(\mathcal{X})$ (in \mathcal{N}), if for every $P \in \Gamma(\mathcal{N} \times \mathcal{X})$, there is a total recursive $S^P : \mathcal{N} \to \mathcal{N}$ such that $P(\alpha, x) \iff G(S^P(\alpha), x)$

Theorem A If Γ is parametrized, then every $\Gamma(\mathcal{X})$ has a parametrization Theorem B If Γ is closed under recursive substitutions and $G \in \Gamma(\mathcal{N} \times \mathcal{X})$ is a parametrization of $\Gamma(\mathcal{X})$, then

 $P \in \Gamma(\mathcal{X}) \iff (\exists \text{ recursive } \varepsilon \in \mathcal{N})[P = G_{\varepsilon} = \{x : G(\varepsilon, x)\}]$

• We think of ε as a code (name) of P (relative to G)

Proofs of Theorems A and B on the preceding slide

Theorem A If Γ is parametrized, then every $\Gamma(\mathcal{X})$ has a parametrization Proof The hypothesis gives us some $H \in \Gamma(\mathbb{N} \times (\mathcal{N} \times \mathcal{X}))$ such that

$$P \in \Gamma(\mathcal{N} \times \mathcal{X}) \iff (\exists e)[P = H_e = \{(\alpha, x) : H(e, (\alpha, x))\}]$$

Put $G(\alpha, x) \iff H(\alpha(0), (\alpha^*, x))$; if $P = H_e$, then $P(\alpha, x) \iff H(e, (\alpha, x)) \iff G(\langle e \rangle^{-} \alpha, x)$ and the required conclusion holds with $S^P(\alpha) = \langle e \rangle^{-} \alpha$

Theorem B If Γ is closed under recursive substitutions and $G \in \Gamma(\mathcal{N} \times \mathcal{X})$ is a parametrization of $\Gamma(\mathcal{X})$, then

$$P \in \Gamma(\mathcal{X}) \iff (\exists ext{ recursive } arepsilon \in \mathcal{N})[P = G_{arepsilon} = \{x : G(arepsilon, x)\}]$$

Proof For the non-trivial (\Rightarrow) direction, let $Q(\alpha, x) \iff P(x)$ and take $\varepsilon = S^Q((\lambda t)0)$

★ The 2nd Recursion Theorem

Theorem (2nd RT) If Γ is parametrized, G parametrizes $\Gamma(\mathcal{X})$ and $P \in \Gamma(\mathcal{N} \times \mathcal{X})$, then there is a recursive $\tilde{\varepsilon} \in \mathcal{N}$ such that

$$(*) \qquad \qquad P(\widetilde{\varepsilon}, x) \iff G(\widetilde{\varepsilon}, x)$$

Proof. Let $\alpha \mapsto ((\alpha)_0, (\alpha)_1)$ be a recursive surjection of \mathcal{N} onto $\mathcal{N} \times \mathcal{N}$ with inverse $(\alpha, \beta) \mapsto \langle \alpha, \beta \rangle$, let $H \in \Gamma(\mathcal{N} \times (\mathcal{N} \times \mathcal{X}))$ parametrize $\Gamma(\mathcal{N} \times \mathcal{X})$, set

$$Q(\alpha, x) \iff H((\alpha)_0, ((\alpha)_1, x))$$

and let S^Q be recursive such that $Q(\alpha, x) \iff G(S^Q(\alpha), x)$ Now $P(S^Q(\alpha), x) \iff H(\varepsilon_0, (\alpha, x))$ (with a recursive ε_0) $\iff Q(\langle \varepsilon_0, \alpha \rangle, x) \iff G(S^Q(\langle \varepsilon_0, \alpha \rangle), x)$ and (*) holds with $\tilde{\varepsilon} = S^Q(\langle \varepsilon_0, \varepsilon_0 \rangle)$

★ The Kleene calculus for local recursion

• For any two spaces \mathcal{X}, \mathcal{Y} , let $G \subseteq \mathcal{N} \times (\mathcal{X} \times \mathbb{N})$ be a parametrization of $\Sigma_1^0(\mathcal{X} \times \mathbb{N})$, let $G^*((\varepsilon, x), s) \iff G(\varepsilon, (x, s))$ and set $\{\varepsilon\}(x) = \{\varepsilon\}^{\mathcal{X} \to \mathcal{Y}}(x) = \Phi_{G^*}(\varepsilon, x)$

by the construction in the proof of the Extension Theorem

 \Rightarrow The partial function $(\varepsilon, x) \mapsto \{\varepsilon\}^{\mathcal{X} \to \mathcal{Y}}(x)$ is locally recursive

 $\Rightarrow f : \mathcal{X} \to \mathcal{Y} \text{ is locally recursive if and only if there is a recursive}$ $\varepsilon \in \mathcal{N} \text{ such that } f(x) \downarrow \implies f(x) = \{\varepsilon\}(x)$

S-Theorem If $f : \mathcal{N} \times \mathcal{X} \to \mathcal{Y}$ is locally recursive, then there is a total, recursive $S^f : \mathcal{N} \to \mathcal{N}$ such that $f(\alpha, x) \downarrow \Longrightarrow [f(\alpha, x) = \{S^f(\alpha)\}(x)]$

Theorem (2nd RT for partial functions) For every locally recursive $f : \mathcal{N} \times \mathcal{X} \rightarrow \mathcal{Y}$, there is a recursive $\tilde{\varepsilon} \in \mathcal{N}$ such that

$$f(\widetilde{\varepsilon},x)\downarrow \implies \left(\{\widetilde{\varepsilon}\}(x)=f(\widetilde{\varepsilon},x)\right)$$

Primitive recursion preserves local recursiveness

Theorem (Primitive recursion) If g and h are locally recursive on the appropriate spaces and $f : \mathbb{N} \times \mathcal{X} \rightarrow \mathcal{W}$ is defined by

$$f(0,x) = g(x),$$

 $f(t+1,x) = h(f(t,x),t,x),$

then f is also locally recursive

Proof. By the 2nd RT (for partial functions), there is a a recursive $\tilde{\varepsilon} \in \mathcal{N}$ such that (when the partial function on the right converges)

$$\{\widetilde{\varepsilon}\}(t,x) = \begin{cases} g(x), & \text{if } t = 0, \\ h(\{\widetilde{\varepsilon}\}(t-1,x), t-1, x) & \text{otherwise} \end{cases}$$

Proof that
$$f(t,x) \downarrow \implies f(t,x) = \{\tilde{\varepsilon}\}(t,x)$$
 is by an easy induction on t