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The child of two fields

• Classical descriptive set theory, 1895 –
Borel, Baire, Hadamard, Lebesgue 1905, Lusin, Suslin, Novikov, . . .
Definability theory on the continuum at first represented by

R = the real numbers, N = Baire space = (N→ N)

with N = {0, 1, . . .}, later studied on Polish spaces

• Hyperarithmetical computability on N, 1950 –
Martin Davis, Mostowski, Kleene 1955, Spector, . . .

Common motivation (after Lebesgue):
? Constructively defined sets and functions should have special
properties that distinguish them from arbitrary ones

• Effective descriptive set theory (EDST): a common extension, on
recursive Polish spaces, with applications to both (and other fields)
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Outline

Lecture 1. Recursion in Polish spaces

Lecture 2. Effective Borel, analytic and co-analytic pointsets

Lecture 3. Structure theory for pointclasses

• Primary sources for the lectures (posted on my homepage):
Descriptive set theory, ynm, 1980, 2nd edition 2009
Classical descriptive set theory as a refinement of effective

descriptive set theory, ynm, 2010
Kleene’s amazing second recursion theorem, ynm, 2010

Notes on effective descriptive set theory, Gregoriades and ynm
(in preparation)

• I will try to give an elementary introduction to some of the
fundamental notions, ideas and methods of proof specific to EDST
not to cover a large part of the field, recent results or applications

• There are several proofs on the slides that I will skip in the lectures
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EDST as a recursion theory: what comes first?

– In classical recursion (computability) theory on N and N ,
we typically define

first the recursive partial functions f : Nn ×N k ⇀ N

next the semirecursive (r.e.) relations P ⊆ Nn ×N k

(the domains of convergence of recursive partial functions)

and then the arithmetical and analytical relations, etc

– In Polish recursion theory we must reverse the order: define

first the semirecursive relations (pointsets) P ⊆ X
next the locally recursive partial functions f : X ⇀ Y

(whose domains of convergence are arbitrary)

and then the arithmetical and analytical relations, etc

(and we must define recursive Polish spaces, which include N,N ,R)

• Emil Post followed this second order of definitions for recursion on N
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? Recursively presented Polish metric spaces

• Fix a recursive enumeration q0, q1, . . . of the rational numbers Q,

i.e., such that k 7→ sign(qk), num(qk), den(qk) are recursive

Def A recursive presentation of a Polish (= separable, complete)
metric space (X , d) is a sequence r = (r0, r1, . . .) of points which is
dense in X and such that the following two relations are recursive:

P r(i , j , k) ⇐⇒ d(ri , rj) ≤ qk , Qr(i , j , k) ⇐⇒ d(ri , rj) < qk

• Recursively presented Polish metric space: (X , d , r)

⇒ The relations Pr, Qr determine (X , d , r) up to isometry

• Relativization: For any ε ∈ N , r is an ε-recursive presentation of
(X , d) if the relations P r, Qr are recursive in ε

⇒ Every Polish metric space has an ε-recursive presentation, for
some ε ∈ N (Used to apply results of EDST to all Polish metric spaces)
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Examples (with natural metrics and presentations)

⇒ {0, . . . ,m} and N with d(n, k) = 1 for n 6= k ,
R, Baire space N , Cantor space C = (N→ {0, 1}) ⊂ N

⇒ Products X × Y, X × Y × Z, . . . of recursively presented
metric spaces (with either of the standard product metrics)

⇒ C [0, 1] = {f : [0, 1] → R : f is continuous} (with the sup norm)

• . . . All “popular” Polish metric spaces have recursive presentations
(mostly immediately from their definitions)

• A Polish metric space (U , dU ) is Urysohn (universal) if

for every finite metric space (X ∪ {y}, d)
and every isometric embedding f : X ½ U ,
there is an isomeric embedding f ∗ : X ∪ {y} ½ U which extends f

Theorem (Urysohn) Up to isometry, there is exactly one Urysohn space

⇒ The Urysohn space has a recursive presentation
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? Open (Σ0
1) and semirecursive (Σ0

1) pointsets

• Coding of open balls (neighborhoods): for given (X , d , r), put

Ns = Ns(X ) = {x ∈ X : d(x , r(s)0) < q(s)1} (s ∈ N),

where s 7→ ((s)0, (s)1) is a recursive surjection of N onto N× N
Def A set G ⊆ X is open (in Σ0

1(X )) if for some ε ∈ N ,

(∗) G =
⋃

s Nε(s);

it is semirecursive (in Σ0
1(X )) if (∗) holds with a recursive ε : N→ N

Σ0
1-Normal Form A pointset P ⊆ X × Y is in Σ0

1(X × Y) if and only if

P(x , y) ⇐⇒ (∃s, t)[x ∈ Ns(X ) & y ∈ Nt(Y) & P∗(s, t)]

with a semirecursive P∗ ⊆ N2 (and similarly for X ,X × Y × Z, . . . )

⇒ The family Σ0
1(X × Y) depends on (X , dX , rX ) and (Y, dY , rY)

(but not on which of the standard metrics we choose for X × Y)
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Closure properties of Σ0
1

⇒ ∅,X are in Σ0
1(X )

⇒ The basic nbhd relation {(x , s) : x ∈ Ns(X )} is in Σ0
1(N×X )

⇒ Σ0
1 is closed under &,∨ and ∃N, P(x) ⇐⇒ (∃t ∈ N)Q(x , t)

Def f : X → Y is recursive if the pointset {(x , s) : f (x) ∈ Ns(Y)} is Σ0
1

⇒ (x , y) 7→ x , α 7→ α∗ = λtα(t + 1), (e, α) 7→ 〈e〉ˆα
(α, i) 7→ (α)i = (λt)α(〈i , t〉),

are recursive, and so is x 7→ (f (x), g(x)), if f and g are

⇒ Σ0
1 is closed under substitution of recursive functions

Proof. If Q(y) ⇐⇒ (∃s)[y ∈ Ns & R∗(s)],
then Q(f (x)) ⇐⇒ (∃s)[f (x) ∈ Ns & R∗(s)]

⇒ The composition x 7→ g(h(x)) of recursive functions is recursive
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? Recursive Polish spaces

• A Polish space is a pair (X , T ) such that for some d ,

(P1) (X , d) is a Polish (separable, complete) metric space, and
(P2) T = Σ0

1(X ) = the open subsets of (X , d)

– What is the “recursive topology” on (X , d , r) with recursive r?
(hard to formulate the appropriate properties for Σ0

1(X ))

Def A recursive Polish space is a pair (X ,F) such that for some (d , r),

(RP1) (X , d , r) is a recursively presented Polish metric space, and
(RP2) F = Σ0

1(N×X ) (which depends only on (X , d , r))

– F = F(X ) is the frame of (X ,F), its recursive topology, and

– if (RP1), (RP2) hold, then (d , r) is a compatible pair of (X ,F)

⇒ If (d1, r1), (d2, r2) are compatible pairs of (X ,F), then

Σ0
1(X , d1, r1) = Σ0

1(X , d2, r2) =def Σ0
1(X )

• Strong closure properties: e.g., X 7→ ∏
i∈NX , X 7→ X<ω
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Pointsets and pointclasses (in recursive Polish spaces)

• A pointset is any subset P ⊆ X of a recursive Polish space
(formally a pair (P,X ))

• A pointclass is any collection Γ of pointsets, e.g., Σ0
1,Σ

0
1,

and for any X , we set

Γ(X ) = {P ⊆ X : P ∈ Γ} = the subsets of X which are (in) Γ

• The points of Γ: For x ∈ X , x ∈ Γ ⇐⇒ {s : x ∈ Ns(X )} ∈ Γ

x is recursive ⇐⇒ x ∈ Σ0
1 (α ∈ Σ0

1 ⇐⇒ α is Turing computable)

• The arithmetical pointclasses are defined inductively from Σ0
1,

Π0
k = ¬Σ0

k , Σ0
k+1 = ∃NΠ0

k (k ≥ 1)

Π0
1(X ) : P(x) ⇐⇒ ¬Q(x) for some Q ∈ Σ0

1(X ),

Σ0
2(X ) : P(x) ⇐⇒ (∃t ∈ N)Q(x , t) for some Q ∈ Π0

1(X × N)

Π0
2(X ) : P(x) ⇐⇒ ¬(∃t ∈ N)Q1(x , t) ⇐⇒ (∀t ∈ N)Q(x , t)

for some Q1 ∈ Π0
1(X × N) and some Q = ¬Q1 ∈ Σ0

1(X × N)
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Partial functions

• A partial function f : X ⇀ Y is a (total) function f : Df → Y,
where Df ⊆ X is the domain of convergence of f , and we write

f (x)↓ ⇐⇒ x ∈ Df , f (x) ↑ ⇐⇒ x /∈ Df

f (x) = g(x) ⇐⇒ [f (x) ↑ & g(x) ↑] ∨ (∃w)[f (x) = w & g(y) = w ]

f v g ⇐⇒ (∀x)[f (x)↓ =⇒ f (x) = g(x)]

– Partial functions compose strictly, i.e.,

g(h1(x), . . . , hm(x)) = w

⇐⇒ (∃y1, . . . , ym)[h1(x) = y1 & · · · & hm(x) = ym

& g(y1, . . . , ym) = w ]
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? Locally recursive partial functions, I

Def A pointset P ⊆ X ×N computes a partial function f : X ⇀ Y
(where it converges) with respect to a compatible pair (d , r) for X , if

f (x)↓ =⇒
(

inf{radius(Ns) : P(x , s)} = 0

&
⋂{Ns(Y) : P(x , s)} = {f (x)}

)

Def f : X ⇀ Y is locally recursive if it is computed by some P in Σ0
1

Theorem The following are equivalent for f : X ⇀ Y:

(1) f is locally recursive

(2) For some Q ∈ Σ0
1(X × N),

f (x)↓ =⇒ (∀s)
(
f (x) ∈ Ns(Y) ⇐⇒ Q(x , s)

)

(3) For every Q ∈ Σ0
1(Y ×Z) there is a P ∈ Σ0

1(X ×Z) such that

f (x)↓ =⇒ [P(x , z) ⇐⇒ Q(f (x), z)]
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? Locally recursive partial functions, II

• The key characterization of local recursiveness is (2),

Theorem f : X ⇀ Y is locally recursive if for some Q ∈ Σ0
1(X × N),

f (x)↓ =⇒ (∀s)
(
f (x) ∈ Ns(Y) ⇐⇒ Q(x , s)

)

⇒ If x is recursive and f (x)↓ , then the point f (x) is recursive

⇒ If f : X → Y is total, then f is locally recursive if it is recursive
(by any of the old definitions)

⇒ The composition x 7→ g(h(x)) of locally recursive partial
functions is locally recursive

Theorem (Recursion and continuity) A function f : X → Y is
continuous if and only if there is a locally recursive f ∗ : N ×X ⇀ Y
and some ε ∈ N so that f (x) = f ∗(ε, x) (x ∈ X )

• It is not always possible to insure that f ∗ : N ×X ⇀ Y is total
Yiannis N. Moschovakis: EDST Lec 1, Recursion in Polish spaces 12/21



The Refined Surjection Theorem

Theorem (Classical) For every Polish space X , there is a
continuous function π : N → X and a closed set F ⊆ N such that
π is one-to-one on F , π[F ] = X , and the inverse π−1 : X ½→F is
Borel measurable

Theorem (Effective) For every recursive Polish space X , there is a
total recursive function π : N → X and a Π0

1 set F ⊆ N such that
π is one-to-one on F , π[F ] = X and the inverse π−1 : X ½→F is
Σ0

2-recursive, i.e., the pointset {(x , s) : π−1(x) ∈ Ns(N ) ∩ F} is Σ0
2

• Proof is by a direct, effective construction

• The theorem makes it possible in many cases to prove results for
N and then “transfer” them to every space
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Extending the domain of convergence

Theorem (Classical) Suppose X ,Y are Polish spaces, A ⊂ X , and
f : A → Y is continuous (with the induced topology on A);
then there is a set A∗ such that

(1) A ⊆ A∗ ⊆ X ;
(2) A∗ is a Gδ-set, i.e., A∗ =

⋂
n∈N An with each An open;

(3) A is dense in A∗; and
(4) there is an extension of f to some continuous Φ : A∗ → Y
Theorem (Effective) Every locally recursive partial function
f : X ⇀ Y has a locally recursive extension Φ : X ⇀ Y whose
domain of convergence {x : Φ(x)↓} is Π0

2

• The classical result follows from the relativized version of the
effective theorem, taking A∗ = {x : Φ(x)↓} ∩ closure(A)

• The effective result cannot be improved to insure that {x : f (x)↓}
is dense in {x : Φ(x)↓}, because closure(A) need not be Π0

2
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Proof of the Extension Theorem for local recursion

Theorem Every locally recursive partial function f : X ⇀ Y has a
locally recursive extension Φ : X ⇀ Y whose domain of
convergence {x : Φ(x)↓} is Π0

2

Fix X ,Y and for any P ∈ Σ0
1(X × N) define Φ = ΦX⇀Y

P : X ⇀ Y by

Φ(x)↓ ⇐⇒ inf{radius(Ns) : P(x , s)} = 0

&
⋂{Nt(Y) : P(x , t)} is a singleton,

Φ(x) = the unique y in
⋂{Nt(Y) : P(x , t)}

⇒ Φ is locally recursive, as it is computed by P

⇒ For any f : X ⇀ Y, P computes f ⇐⇒ f v Φ

⇒ {x : Φ(x)↓} is Π0
2, because

Φ(x)↓ ⇐⇒ (∀s, t)[[P(x , s) & P(x , t)] =⇒ Ns ∩ Nt 6= ∅]
& (∀n)(∃s)[P(x , s) & radius(Ns) < 2−n]
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Is it recursion or just “effective continuity”?

Theorem (Primitive recursion) If g and h are locally recursive on
the appropriate spaces and f : N×X ⇀ W is defined by

f (0, x) = g(x),

f (t + 1, x) = h(f (t, x), t, x),

then f is also locally recursive

• The usual proofs for N (via Dedekind’s analysis of recursive
definition) or the attempt to show directly that f is effectively
continuous are not easy to carry out

• We develop an alternative approach which also works for nested,
double, . . . , recursion as well as effective transfinite recursion.

• It is a very general, fundamental tool of EDST
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? Parametrized pointclasses

Def A pointclass Γ is parametrized if it is closed under (total)
recursive substitutions and for every X , there is some
H ∈ Γ(N×X ) which enumerates Γ(X ), i.e.,

P ∈ Γ(X ) ⇐⇒ (∃e)[P = He = {x : H(e, x)}]
⇒ For every X and k ≥ 1, Σ0

k(X ), Π0
k(X ) are parametrized

Def A pointset G ∈ Γ(N ×X ) is a (good) parametrization of
Γ(X ) (in N ), if for every P ∈ Γ(N ×X ), there is a total recursive

SP : N → N such that P(α, x) ⇐⇒ G (SP(α), x)

Theorem A If Γ is parametrized, then every Γ(X ) has a parametrization

Theorem B If Γ is closed under recursive substitutions and
G ∈ Γ(N ×X ) is a parametrization of Γ(X ), then

P ∈ Γ(X ) ⇐⇒ (∃ recursive ε ∈ N )[P = Gε = {x : G (ε, x)}]
• We think of ε as a code (name) of P (relative to G )
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Proofs of Theorems A and B on the preceding slide

Theorem A If Γ is parametrized, then every Γ(X ) has a parametrization

Proof The hypothesis gives us some H ∈ Γ(N× (N ×X )) such that

P ∈ Γ(N ×X ) ⇐⇒ (∃e)[P = He = {(α, x) : H(e, (α, x))}]

Put G (α, x) ⇐⇒ H(α(0), (α∗, x)) ; if P = He , then

P(α, x) ⇐⇒ H(e, (α, x)) ⇐⇒ G (〈e〉ˆα, x) and the required
conclusion holds with SP(α) = 〈e〉ˆα

Theorem B If Γ is closed under recursive substitutions and
G ∈ Γ(N ×X ) is a parametrization of Γ(X ), then

P ∈ Γ(X ) ⇐⇒ (∃ recursive ε ∈ N )[P = Gε = {x : G (ε, x)}]

Proof For the non-trivial (⇒) direction, let Q(α, x) ⇐⇒ P(x)
and take ε = SQ((λt)0)
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? The 2nd Recursion Theorem

Theorem (2nd RT) If Γ is parametrized, G parametrizes Γ(X ) and
P ∈ Γ(N ×X ), then there is a recursive ε̃ ∈ N such that

(∗) P(ε̃, x) ⇐⇒ G (ε̃, x)

Proof. Let α 7→ ((α)0, (α)1) be a recursive surjection of N onto

N ×N with inverse (α, β) 7→ 〈α, β〉 ,

let H ∈ Γ(N × (N ×X )) parametrize Γ(N ×X ), set

Q(α, x) ⇐⇒ H((α)0, ((α)1, x))

and let SQ be recursive such that Q(α, x) ⇐⇒ G (SQ(α), x)

Now P(SQ(α), x) ⇐⇒ H(ε0, (α, x)) (with a recursive ε0)
⇐⇒ Q(〈ε0, α〉, x) ⇐⇒ G (SQ(〈ε0, α〉), x)

and (∗) holds with ε̃ = SQ(〈ε0, ε0〉)
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? The Kleene calculus for local recursion

• For any two spaces X ,Y, let G ⊆ N × (X × N) be a
parametrization of Σ0

1(X × N), let G ∗((ε, x), s) ⇐⇒ G (ε, (x , s))

and set {ε}(x) = {ε}X⇀Y(x) = ΦG∗(ε, x)

by the construction in the proof of the Extension Theorem

⇒ The partial function (ε, x) 7→ {ε}X⇀Y(x) is locally recursive

⇒ f : X ⇀ Y is locally recursive if and only if there is a recursive

ε ∈ N such that f (x)↓ =⇒ f (x) = {ε}(x)

S-Theorem If f : N ×X ⇀ Y is locally recursive, then there is a total,

recursive Sf : N → N such that f (α, x)↓ =⇒ [f (α, x) = {Sf (α)}(x)]

Theorem (2nd RT for partial functions) For every locally recursive
f : N ×X ⇀ Y, there is a recursive ε̃ ∈ N such that

f (ε̃, x)↓ =⇒
(
{ε̃}(x) = f (ε̃, x)

)
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Primitive recursion preserves local recursiveness

Theorem (Primitive recursion) If g and h are locally recursive on
the appropriate spaces and f : N×X ⇀ W is defined by

f (0, x) = g(x),

f (t + 1, x) = h(f (t, x), t, x),

then f is also locally recursive

Proof. By the 2nd RT (for partial functions), there is a a recursive
ε̃ ∈ N such that (when the partial function on the right converges)

{ε̃}(t, x) =

{
g(x), if t = 0,

h({ε̃}(t − 1, x), t − 1, x) otherwise

Proof that f (t, x)↓ =⇒ f (t, x) = {ε̃}(t, x) is by an easy

induction on t
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